Affiliation:
1. Department of Chemistry Guangming Advanced Research Institute and Shenzhen Grubbs Institute Southern University of Science and Technology Shenzhen 518055 Guangdong P. R. China
Abstract
AbstractCatalytic methods allowing for the reliable prediction and control of diverse regioselectivity along with the control of enantioselectivity to access different regio‐ and enantiomers by switching the least reaction parameters are one of the most attractive ways in organic synthesis, which provide access to diverse enantioenriched architectures from identical starting materials. Herein, a Co‐catalyzed regiodivergent and enantioselective reductive hydroalkylation of 1,3‐dienes with aldehydes has been achieved, furnishing different enantioenriched homoallylic alcohol architectures in good levels of enantioselectivity. The reaction features the switch of regioselectivity tuned by the selection of proton source. The use of an acid as proton source provided asymmetric 1,2‐hydroalkylation products under reductive conditions, yet asymmetric 4,3‐hydroalkylation products were obtained with silane as hydride source. This catalytic protocol allows for the access of homoallylic alcohols with two continuous saturated carbon centers in good levels of regio‐, diastereo‐, and enantioselectivity.
Funder
National Natural Science Foundation of China
Department of Education of Guangdong Province
Guangdong Provincial Department of Science and Technology
Science, Technology and Innovation Commission of Shenzhen Municipality