Affiliation:
1. Schulich Faculty of Chemistry and the Resnick Sustainability Center for Catalysis Technion - Israel Institute of Technology Haifa 3200008 Israel
2. Sibley School of Mechanical and Aerospace Engineering Cornell University Ithaca NY 14853 USA
Abstract
AbstractMechanochemistry can lead to the degradation of the properties of covalent macromolecules. In recent years, numerous functional materials have been developed based on block copolymers (BCPs), however, like homopolymers, their chains could undergo mechanochemical damage during processing, which could have crucial impact on their performance. To investigate the mechanochemical response of BCPs, multiple polymers comprising different ratios of butyl acrylate and methyl methacrylate were prepared with similar degree of polymerization and stressed in solution via ultrasonication. Interestingly, all BCPs, regardless of the amount of the methacrylate monomer, presented a mechanochemistry rate constant similar to that of the methacrylate homopolymer, while a random copolymer reacted like the acrylate homopolymer. Size‐exclusion chromatography showed that, in addition to the typical main peak shift towards higher retention times, a different daughter fragment was produced indicating a secondary selective scission site, situated around the covalent connection between the two blocks. Molecular dynamics modeling using acrylate and methacrylate oligomers were carried out and indicated that dynamic phase separation occurs even in a good solvent. Such non‐random conformations can explain the faster polymer mechanochemistry. Moreover, the dynamic model for end‐to‐end chain overstretching supports bond scission which is not necessarily chain‐centered.
Funder
Israel Science Foundation
Air Force Materiel Command
National Science Foundation