Hollow Core‐Shelled Na4Fe2.4Ni0.6(PO4)2P2O7 with Tiny‐Void Space Capable Fast‐Charge and Low‐Temperature Sodium Storage

Author:

Qi Xinran12,Dong Hanghang3,Yan Hao4,Hou Baoxiu1,Liu Haiyan1,Shang Ningzhao1,Wang Longgang2,Song Jianjun5,Chen Shuangqiang346,Chou Shulei3,Zhao Xiaoxian1ORCID

Affiliation:

1. Department of Chemistry, College of Science Hebei Agriculture University Baoding 071001 P.R. China

2. State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Nano-biotechnology Yanshan University Qinhuangdao 066004 China

3. Institute for Carbon Neutralization, College of Chemistry and Materials Engineering Wenzhou University Wenzhou, Zhejiang 325035 China

4. Department of Chemical Engineering, School of Environmental and Chemical Engineering Shanghai University Shanghai 200444 P. R. China

5. College of Physics Qingdao University Qingdao 266071 China

6. Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Nankai University Tianjin 300071 China

Abstract

AbstractIron‐based mixed polyanion phosphate Na4Fe3(PO4)2P2O7 (NFPP) is recognized as a promising cathode for Sodium‐ion Batteries (SIBs) due to its low cost and environmental friendliness. However, its inherent low conductivity and sluggish Na+ diffusion limit fast charge and low‐temperature sodium storage. This study pioneers a scalable synthesis of hollow core–shelled Na4Fe2.4Ni0.6(PO4)2P2O7 with tiny‐void space (THoCS‐0.6Ni) via a one‐step spray‐drying combined with calcination process due to the different viscosity, coordination ability, molar ratios, and shrinkage rates between citric acid and polyvinylpyrrolidone. This unique structure with interconnected carbon networks ensures rapid electron transport and fast Na+ diffusion, as well as efficient space utilization for relieving volume expansion. Incorporating regulation of lattice structure by doping Ni heteroatom to effectively improve intrinsic electron conductivity and optimize Na+ diffusion path and energy barrier, which achieves fast charge and low‐temperature sodium storage. As a result, THoCS‐0.6Ni exhibits superior rate capability (86.4 mAh g−1 at 25 C). Notably, THoCS‐0.6Ni demonstrates exceptional cycling stability at −20 °C with a capacity of 43.6 mAh g−1 after 2500 cycles at 5 C. This work provides a universal strategy to design the hollow core–shelled structure with tiny‐void space cathode materials for reversible batteries with fast‐charge and low‐temperature Na‐storage features.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3