Rationalizing Acidic Oxygen Evolution Reaction over IrO2: Essential Role of Hydronium Cation

Author:

Mou Tianyou1,Bushiri Daniela A.2,Esposito Daniel V.2,Chen Jingguang G.12ORCID,Liu Ping1

Affiliation:

1. Chemistry Division Brookhaven National Laboratory 11973 Upton NY USA

2. Department of Chemical Engineering Columbia University 10027 New York NY USA

Abstract

AbstractThe development of active, stable, and more affordable electrocatalysts for acidic oxygen evolution reaction (OER) is of great importance for the practical application of electrolyzers and the advancement of renewable energy conversion technologies. Currently, IrO2 is the only catalyst with high stability and activity, but a high cost. Further optimization of the catalyst is limited by the lack of understanding of catalytic behaviors at the acid‐IrO2 interface. Here, in strong interaction with the experiment, we develop an explicit model based on grand‐canonical density function theory (GC‐DFT) calculations to describe acidic OER over IrO2. Compared to the explicit models reported previously, hydronium cations (H3O+) are introduced at the electrochemical interface in the current model. As a result, a variation in stable IrO2 surface configuration under the OER operating condition from previously proposed complete *O‐coverage to a mixture coverage of *OH and *O is revealed, which is well supported by in situ Raman measurements. In addition, the accuracy of predicted overpotential is increased in comparison with the experimentally measured. More importantly, an alteration of the potential limiting step from previously identified *O→*OOH to *OH→*O is observed, which opens new opportunities to advance the IrO2‐based catalysts for acidic OER.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3