Cavity‐Directed Synthesis of Labile Polyoxometalates for Catalysis in Confined Spaces

Author:

Liu Cui‐Lian1ORCID,Moussawi Mhamad Aly1ORCID,Kalandia Givi1ORCID,Salazar Marcano David E.1ORCID,Shepard William E.2ORCID,Parac‐Vogt Tatjana N.1ORCID

Affiliation:

1. Department of Chemistry KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium

2. Synchrotron SOLEIL L'Orme des Merisiers Départementale 128 91190 Saint-Aubin France

Abstract

AbstractThe artificial microenvironments inside coordination cages have gained significant attention for performing enzyme‐like catalytic reactions by facilitating the formation of labile and complex molecules through a “ship‐in‐a‐bottle” approach. Despite many fascinating examples, this approach remains scarcely explored in the context of synthesizing metallic clusters such as polyoxometalates (POMs). The development of innovative approaches to control and influence the speciation of POMs in aqueous solutions would greatly advance their applicability and could ultimately lead to the formation of elusive clusters that cannot be synthesized by using traditional methods. In this study, we employ host–guest stabilization within a coordination cage to enable a novel cavity‐directed synthesis of labile POMs in aqueous solutions under mild conditions. The elusive Lindqvist [M6O19]2− (M=Mo or W) POMs were successfully synthesized at room temperature via the condensation of molybdate or tungstate building blocks within the confined cavity of a robust and water‐soluble Pt6L4(NO3)12 coordination cage. Importantly, the encapsulation of these POMs enhances their stability in water, rendering them efficient catalysts for environmentally friendly and selective sulfoxidation reactions using H2O2 as a green oxidant in a pure aqueous medium. The approach developed in this paper offers a means to synthesize and stabilize the otherwise unstable metal‐oxo clusters in water, which can broaden the scope of their applications.

Funder

Onderzoeksraad, KU Leuven

Fonds Wetenschappelijk Onderzoek

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3