Rapid Ozone Decomposition over Water‐activated Monolithic MoO3/Graphdiyne Nanowalls under High Humidity

Author:

Zhu Yuhua1,Yang Leyi1,Ma Jiami2,Fang Yarong1,Yang Ji1,Chen Xiaoping1,Zheng Juan1,Zhang Shuhong1,Chen Wei1,Pan Chuanqi1,Zhang Baojian1,Qiu Xiaofeng1,Luo Zhu13,Wang Jinlong13,Guo Yanbing13ORCID

Affiliation:

1. Key Laboratory of Pesticide & Chemical Biology of Ministry of Education Institute of Environmental and Applied Chemistry Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction Ministry of Education College of Chemistry Central China Normal University Wuhan Hubei 430082 P. R. China

2. School of Resources and Environmental Engineering Wuhan University of Technology Wuhan 430070 P. R. China

3. Wuhan Institute of Photochemistry and Technology 7 North Bingang Road Wuhan Hubei 430082 P. R. China

Abstract

AbstractCatalytic ozone (O3) decomposition at high relative humidity (RH) remains a great challenge due to the catalysts poison and deactivation under high humidity. Here, we firstly elaborate the role of water activation and the corresponding mechanism of the promoted O3 decomposition over the three‐dimensional monolithic molybdenum oxide/graphdiyne (MoO3/GDY) catalyst. The O3 decomposition over MoO3/GDY reaches up to 100 % under high humid condition (75 % RH) at room temperature, which is 4.0 times as high as that of dry conditions, significantly surpasses other carbon‐based MoO3 materials(≤7.1 %). The sp‐hybridized carbon in GDY donates electrons to MoO3 along the C−O−Mo bond, facilitating water activation to form hydroxyl species. As a result, hydroxyl species dissociated from water act as new active sites, promoting the adsorption of O3 and the generation of new intermediate species (hydroxyl ⋅OH and superoxo ⋅O2), which significantly lowers the energy barriers of O3 decomposition (0.57 eV lower than dry conditions).

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3