Attenuating N‐Oxyl Decomposition for Improved Hydrogen Atom Transfer Catalysts

Author:

Yang Cheng1,Farmer Luke A.2,McFee Elvis C.1ORCID,Jha Rahul Kant1ORCID,Maldonado Stephen13ORCID,Pratt Derek A.2ORCID,Stephenson Corey R. J.1ORCID

Affiliation:

1. Willard Henry Dow Laboratory, Department of Chemistry University of Michigan 930 North University Avenue Ann Arbor, Michigan 48109 United States

2. Department of Chemistry and Biomolecular Sciences University of Ottawa Ottawa ON K1N 6N5 Canada

3. Program in Applied Physics University of Michigan Ann Arbor, Michigan 48109 United States

Abstract

AbstractThe design of N‐oxyl hydrogen atom transfer catalysts has proven challenging to date. Previous efforts have focused on the functionalization of the archetype, phthalimide‐N‐oxyl. Driven in part by the limited options for modification of this structure, this strategy has provided only modest improvements in reactivity and/or solubility. Our previous mechanistic efforts suggested that while the electron‐withdrawing carbonyls of the phthalimide are necessary to maximize the O−H bond dissociation enthalpy of the HAT product hydroxylamine and overall reaction thermodynamics, they undergo nucleophilic substitution leading to catalyst decomposition. In an attempt to minimize this vulnerability, we report the characterization of N‐oxyl catalysts wherein the aryl ring in PINO is replaced with the combination of a substituted heteroatom and quaternary carbon. By rendering one carbonyl carbon less electrophilic and the other less sterically accessible, the corresponding N1‐aryl‐hydantoin‐N3‐oxyl radical showed significantly higher stability than PINO as well as a modest improvement in reactivity. This proof‐of‐principle in new scaffold design may accelerate future HAT catalyst discovery and development.

Funder

Division of Chemical, Bioengineering, Environmental, and Transport Systems

Natural Sciences and Engineering Research Council of Canada

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3