Mining the Metabolic Capacity of Clostridium sporogenes Aided by Machine Learning

Author:

Ouyang Huanrong1,Xu Zhao2,Hong Joshua1,Malroy Jeshua1,Qian Liangyu1,Ji Shuiwang2,Zhu Xuejun13ORCID

Affiliation:

1. Department of Chemical Engineering Texas A&M University College Station 77843 United States

2. Department of Computer Science & Engineering Texas A&M University College Station 77843 United States

3. Interdisciplinary Graduate Program in Genetics and Genomics Texas A&M University College Station 77843 United States

Abstract

AbstractAnaerobes dominate the microbiota of the gastrointestinal (GI) tract, where a significant portion of small molecules can be degraded or modified. However, the enormous metabolic capacity of gut anaerobes remains largely elusive in contrast to aerobic bacteria, mainly due to the requirement of sophisticated laboratory settings. In this study, we employed an in silico machine learning platform, MoleculeX, to predict the metabolic capacity of a gut anaerobe, Clostridium sporogenes, against small molecules. Experiments revealed that among the top seven candidates predicted as unstable, six indeed exhibited instability in C. sporogenes culture. We further identified several metabolites resulting from the supplementation of everolimus in the bacterial culture for the first time. By utilizing bioinformatics and in vitro biochemical assays, we successfully identified an enzyme encoded in the genome of C. sporogenes responsible for everolimus transformation. Our framework thus can potentially facilitate future understanding of small molecules metabolism in the gut, further improve patient care through personalized medicine, and guide the development of new small molecule drugs and therapeutic approaches.

Funder

Artie McFerrin Department of Chemical Engineering, Texas A and M University

Texas A and M Engineering Experiment Station, Texas A and M University

National Institute of General Medical Sciences

Welch Foundation

Texas A and M University

National Institute on Aging

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3