Controlled Biocatalytic Synthesis of a Metal Nanoparticle‐Enzyme Hybrid: Demonstration for Catalytic H2‐driven NADH Recycling

Author:

Browne Lucy B. F.1,Sudmeier Tim1,Landis Maya A.1,Allen Christopher S.23,Vincent Kylie A.1ORCID

Affiliation:

1. Department of Chemistry University of Oxford Inorganic Chemistry Laboratory South Parks Rd Oxford OX1 3QR United Kingdom

2. Electron Physical Science Imaging Centre Diamond Light Source Oxford OX11 0DE United Kingdom

3. Department of Materials University of Oxford Parks Rd Oxford OX1 3PH United Kingdom

Abstract

AbstractHere we demonstrate the preparation of enzyme‐metal biohybrids of NAD+ reductase with biocatalytically‐synthesised small gold nanoparticles (NPs, <10 nm) and core‐shell gold‐platinum NPs for tandem catalysis. Despite the variety of methods available for NP synthesis, there remains a need for more sustainable strategies which also give precise control over the shape and size of the metal NPs for applications in catalysis, biomedical devices, and electronics. We demonstrate facile biosynthesis of spherical, highly uniform, gold NPs under mild conditions using an isolated enzyme moiety, an NAD+ reductase, to reduce metal salts while oxidising a nicotinamide‐containing cofactor. By subsequently introducing platinum salts, we show that core‐shell Au@Pt NPs can then be formed. Catalytic function of these enzyme‐Au@Pt NP hybrids was demonstrated for H2‐driven NADH recycling to support enantioselective ketone reduction by an NADH‐dependent alcohol dehydrogenase.

Funder

H2020 European Research Council

Engineering and Physical Sciences Research Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3