Interfacial Engineering for Efficient Low‐Temperature Flexible Perovskite Solar Cells

Author:

Cai Weilun1,Yang Tinghuan1,Liu Chou1,Wang Yajie1,Wang Shiqiang1,Du Yachao1,Wu Nan1,Huang Wenliang1,Wang Shumei1,Wang Zhichao1,Chen Xin1,Feng Jiangshan1,Zhao Guangtao1,Ding Zicheng1,Pan Xu2,Zou Pengchen3,Yao Jianxi3,Liu Shengzhong (Frank)14,Zhao Kui1ORCID

Affiliation:

1. Key Laboratory of Applied Surface and Colloid Chemistry National Ministry of Education Shaanxi Key Laboratory for Advanced Energy Devices Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science and Engineering Shaanxi Normal University Xi'an 710119 China

2. Key Laboratory of Novel Thin-Film Solar Cells Institute of Plasma Physics Chinese Academy of Sciences Hefei 230031 China

3. Shaanxi State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources Beijing Key Laboratory of Energy Safety and Clean Utilization North China Electric Power University Beijing 102206 P. R. China

4. Dalian National Laboratory for Clean Energy iChEM Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China

Abstract

AbstractPhotovoltaic technology with low weight, high specific power in cold environments, and compatibility with flexible fabrication is highly desired for near‐space vehicles and polar region applications. Herein, we demonstrate efficient low‐temperature flexible perovskite solar cells by improving the interfacial contact between electron‐transport layer (ETL) and perovskite layer. We find that the adsorbed oxygen active sites and oxygen vacancies of flexible tin oxide (SnO2) ETL layer can be effectively decreased by incorporating a trace amount of titanium tetrachloride (TiCl4). The effective defects elimination at the interfacial increases the electron mobility of flexible SnO2 layer, regulates band alignment at the perovskite/SnO2 interface, induces larger perovskite crystal growth, and improves charge collection efficiency in a complete solar cell. Correspondingly, the improved interfacial contact transforms into high‐performance solar cells under one‐sun illumination (AM 1.5G) with efficiencies up to 23.7 % at 218 K, which might open up a new era of application of this emerging flexible photovoltaic technology to low‐temperature environments such as near‐space and polar regions.

Funder

Higher Education Discipline Innovation Project

Key Research and Development Projects of Shaanxi Province

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3