Water Self‐Dissociation is Insensitive to Nanoscale Environments

Author:

Di Pino Solana12,Perez Sirkin Yamila A.1,Morzan Uriel N.2,Sánchez Verónica M.1,Hassanali Ali2,Scherlis Damian A.12ORCID

Affiliation:

1. Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires, Ciudad Universitaria Buenos Aires C1428EHA Argentina

2. Condensed Matter and Statistical Physics International Centre for Theoretical Physics I-34151 Trieste Italy.

Abstract

AbstractNanoconfinement effects on water dissociation and reactivity remain controversial, despite their importance to understand the aqueous chemistry at interfaces, pores, or aerosols. The pKw in confined environments has been assessed from experiments and simulations in a few specific cases, leading to dissimilar conclusions. Here, with the use of carefully designed ab initio simulations, we demonstrate that the energetics of bulk water dissociation is conserved intact to unexpectedly small length‐scales, down to aggregates of only a dozen molecules or pores of widths below 2 nm. The reason is that most of the free‐energy involved in water autoionization comes from breaking the O−H covalent bond, which has a comparable barrier in the bulk liquid, in a small droplet of nanometer size, or in a nanopore in the absence of strong interfacial interactions. Thus, dissociation free‐energy profiles in nanoscopic aggregates or in 2D slabs of 1 nm width reproduce the behavior corresponding to the bulk liquid, regardless of whether the corresponding nanophase is delimited by a solid or a gas interface. The present work provides a definite and fundamental description of the mechanism and thermodynamics of water dissociation at different scales with broader implications on reactivity and self‐ionization at the air‐liquid interface.

Funder

Fondo para la Investigación Científica y Tecnológica

Simons Foundation

Publisher

Wiley

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3