CoN1O2 Single‐Atom Catalyst for Efficient Peroxymonosulfate Activation and Selective Cobalt(IV)=O Generation

Author:

Li Xue1,Wen Xue1,Lang Junyu2,Wei Yan1,Miao Jie1,Zhang Xiangcheng1,Zhou Baoxue1,Long Mingce1ORCID,Alvarez Pedro J. J.3,Zhang Lizhi1ORCID

Affiliation:

1. School of Environmental Science and Engineering Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education) Shanghai Jiao Tong University Shanghai 200240 P. R. China

2. School of Physical Science and Technology ShanghaiTech University Shanghai 201210 P. R. China

3. Department of Civil and Environmental Engineering Rice University Houston TX 77005 USA

Abstract

AbstractHigh‐valent metal‐oxo (HVMO) species are powerful non‐radical reactive species that enhance advanced oxidation processes (AOPs) due to their long half‐lives and high selectivity towards recalcitrant water pollutants with electron‐donating groups. However, high‐valent cobalt‐oxo (CoIV=O) generation is challenging in peroxymonosulfate (PMS)‐based AOPs because the high 3d‐orbital occupancy of cobalt would disfavor its binding with a terminal oxygen ligand. Herein, we propose a strategy to construct isolated Co sites with unique N1O2 coordination on the Mn3O4 surface. The asymmetric N1O2 configuration is able to accept electrons from the Co 3d‐orbital, resulting in significant electronic delocalization at Co sites for promoted PMS adsorption, dissociation and subsequent generation of CoIV=O species. CoN1O2/Mn3O4 exhibits high intrinsic activity in PMS activation and sulfamethoxazole (SMX) degradation, highly outperforming its counterpart with a CoO3 configuration, carbon‐based single‐atom catalysts with CoN4 configuration, and commercial cobalt oxides. CoIV=O species effectively oxidize the target contaminants via oxygen atom transfer to produce low‐toxicity intermediates. These findings could advance the mechanistic understanding of PMS activation at the molecular level and guide the rational design of efficient environmental catalysts.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Wiley

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3