Affiliation:
1. CAS Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences (BNLMS) Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
2. School of Chemical Sciences University of Chinese Academy of Sciences (UCAS) Beijing 100049 P. R. China
3. Beijing iAmetal New Energy Technology Co., Ltd Beijing 100081 P. R. China
Abstract
AbstractThe inherently huge volume expansion during Li uptake has hindered the use of Si‐based anodes in high‐energy lithium‐ion batteries. While some pore‐forming and nano‐architecting strategies show promises to effectively buffer the volume change, other parameters essential for practical electrode fabrication, such as compaction density, are often compromised. Here we propose a new in situ Mg doping strategy to form closed‐nanopore structure into a micron‐sized SiOx particle at a high bulk density. The doped Mg atoms promote the segregation of O, so that high‐density magnesium silicates form to generate closed nanopores. By altering the mass content of Mg dopant, the average radii (ranged from 5.4 to 9.7 nm) and porosities (ranged from 1.4 % to 15.9 %) of the closed pores are precisely adjustable, which accounts for volume expansion of SiOx from 77.8 % to 22.2 % at the minimum. Benefited from the small volume variation, the Mg‐doped micron‐SiOx anode demonstrates improved Li storage performance towards realization of a 700‐(dis)charge‐cycle, 11‐Ah‐pouch‐type cell at a capacity retention of >80 %. This work offers insights into reasonable design of the internal structure of micron‐sized SiOx and other materials that undergo conversion or alloying reactions with drastic volume change, to enable high‐energy batteries with stable electrochemistry.
Funder
National Key Research and Development Program of China
Natural Science Foundation of Beijing Municipality
National Natural Science Foundation of China
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献