Multifunctional Trifluoroborate Additive for Simultaneous Carrier Dynamics Governance and Defects Passivation to Boost Efficiency and Stability of Inverted Perovskite Solar Cells

Author:

Li Jun12,Xie Lisha1,Liu Guanhao3,Pu Zhenwei1,Tong Xinyu1,Yang Shuncheng1,Yang Mengjin1,Liu Jian1,Chen Jiujiang1,Meng Yuanyuan1,Wang Ying3,Wang Tao2,Ge Ziyi1ORCID

Affiliation:

1. Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices Ningbo Institute of Materials Technology & Engineering Chinese Academy of Sciences Ningbo 315201 China

2. School of Materials Science and Engineering Zhejiang Sci-Tech University Hangzhou 310018 China

3. Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU—CAS Joint Laboratory of Functional Materials and Devices Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China

Abstract

AbstractThe main obstacles to promoting the commercialization of perovskite solar cells (PSCs) include their record power conversion efficiency (PCE), which still remains below the Shockley–Queisser limit, and poor long‐term stability, attributable to crystallographic defects in perovskite films and open‐circuit voltage (Voc) loss in devices. In this study, potassium (4‐tert‐butoxycarbonylpiperazin‐1‐yl) methyl trifluoroborate (PTFBK) was employed as a multifunctional additive to target and modulate bulk perovskite defects and carrier dynamics of PSCs. Apart from simultaneously passivating anionic and cationic defects, PTFBK could also optimize the energy‐level alignment of devices and weaken the interaction between carriers and longitudinal optical phonons, resulting in a carrier lifetime of greater than 3 μs. Furthermore, it inhibited non‐radiative recombination and improved the crystallization capacity in the target perovskite film. Hence, the target rigid and flexible p‐i‐n PSCs yielded champion PCEs of 24.99 % and 23.48 %, respectively. More importantly, due to hydrogen bonding between formamidinium and fluorine, the target devices exhibited remarkable thermal, humidity, and operational tracking at maximum power point stabilities. The reduced Young's modulus and residual stress in the perovskite layer also provided excellent bending stability for flexible target devices.

Funder

National Science Fund for Distinguished Young Scholars

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3