Optimizing Molecular Packing via Steric Hindrance for Reducing Non‐Radiative Recombination in Organic Solar Cells

Author:

Ren Junzhen12,Zhang Shaoqing3,Chen Zhihao1,Zhang Tao12,Qiao Jiawei4,Wang Jingwen1,Ma Lijiao1,Xiao Yang12,Li Zi1,Wang Jianqiu1,Hao Xiaotao4,Hou Jianhui132ORCID

Affiliation:

1. State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences 100190 Beijing China

2. School of Chemical Science University of Chinese Academy of Sciences 100049 Beijing China

3. School of Chemistry and Biology Engineering University of Science and Technology Beijing 100083 Beijing China

4. School of Physics, State Key Laboratory of Crystal Materials Shandong University 250100 Shandong China

Abstract

AbstractInnovative molecule design strategy holds promise for the development of next‐generation acceptor materials for efficient organic solar cells with low non‐radiative energy loss (ΔEnr). In this study, we designed and prepared three novel acceptors, namely BTP‐Biso, BTP‐Bme and BTP‐B, with sterically structured triisopropylbenzene, trimethylbenzene and benzene as side chains inserted into the shoulder of the central core. The progressively enlarged steric hindrance from BTP‐B to BTP‐Bme and BTP‐Biso induces suppressed intramolecular rotation and altered the molecule packing mode in their aggregation states, leading to significant changes in absorption spectra and energy levels. By regulating the intermolecular π–π interactions, BTP‐Bme possesses relatively reduced non‐radiative recombination rate and extended exciton diffusion lengths. The binary device based on PB2 : BTP‐Bme exhibits an impressive power conversion efficiency (PCE) of 18.5 % with a low ΔEnr of 0.19 eV. Furthermore, the ternary device comprising PB2 : PBDB‐TF : BTP‐Bme achieves an outstanding PCE of 19.3 %. The molecule design strategy in this study proposed new perspectives for developing high‐performance acceptors with low ΔEnr in OSCs.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3