Single‐Atom Zinc Sites with Synergetic Multiple Coordination Shells for Electrochemical H2O2 Production

Author:

Wei Gangya1ORCID,Li Yunxiang2ORCID,Liu Xupo3,Huang Jinrui3ORCID,Liu Mengran3ORCID,Luan Deyan4ORCID,Gao Shuyan13ORCID,Lou Xiong Wen (David)4ORCID

Affiliation:

1. School of Chemistry and Chemical Engineering Henan Normal University 453007 Xinxiang Henan P. R. China

2. School of Chemistry Chemical Engineering and Biotechnology Nanyang Technological University 62 Nanyang Drive 637459 Singapore Singapore

3. School of Materials Science and Engineering Henan Normal University 453007 Xinxiang Henan P. R. China

4. Department of Chemistry City University of Hong Kong 83 Tat Chee Avenue, Kowloon 999077 Hong Kong China

Abstract

AbstractPrecise manipulation of the coordination environment of single‐atom catalysts (SACs), particularly the simultaneous engineering of multiple coordination shells, is crucial to maximize their catalytic performance but remains challenging. Herein, we present a general two‐step strategy to fabricate a series of hollow carbon‐based SACs featuring asymmetric Zn−N2O2 moieties simultaneously modulated with S atoms in higher coordination shells of Zn centers (n≥2; designated as Zn−N2O2−S). Systematic analyses demonstrate that the synergetic effects between the N2O2 species in the first coordination shell and the S atoms in higher coordination shells lead to robust discrete Zn sites with the optimal electronic structure for selective O2 reduction to H2O2. Remarkably, the Zn−N2O2 moiety with S atoms in the second coordination shell possesses a nearly ideal Gibbs free energy for the key OOH* intermediate, which favors the formation and desorption of OOH* on Zn sites for H2O2 generation. Consequently, the Zn−N2O2−S SAC exhibits impressive electrochemical H2O2 production performance with high selectivity of 96 %. Even at a high current density of 80 mA cm−2 in the flow cell, it shows a high H2O2 production rate of 6.924 mol gcat−1 h−1 with an average Faradaic efficiency of 93.1 %, and excellent durability over 65 h.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3