Ligand‐Controlled Copper‐Catalyzed Halo‐Halodifluoromethylation of Alkenes and Alkynes Using Fluorinated Carboxylic Anhydrides

Author:

Mukherjee Subrata1,Aoki Yuma1,Kawamura Shintaro12ORCID,Sodeoka Mikiko12ORCID

Affiliation:

1. Catalysis and Integrated Research Group RIKEN Center for Sustainable Resource Science 2-1 Hirosawa Wako Saitama 351-0198 Japan

2. Synthetic Organic Chemistry Laboratory RIKEN Cluster for Pioneering Research 2-1 Hirosawa Wako Saitama 351-0198 Japan

Abstract

AbstractPolyhalogenated molecules are often found as bioactive compounds in nature and are used as synthetic building blocks. Fluoroalkyl compounds hold promise for the development of novel pharmaceuticals and agrochemicals, as the introduction of fluoroalkyl groups is known to improve lipophilicity, membrane permeability, and metabolic stability. Three‐component 1,2‐halo‐halodifluoromethylation reactions of alkenes are useful for their synthesis. However, general methods enabling the introduction of halodifluoromethyl (CF2X) and halogen (X’) groups in the desired combination of X and X’ are lacking. To address this gap, for the first time, we report a three‐component halo‐halodifluoromethylation of alkenes and alkynes using combinations of commercially available fluorinated carboxylic anhydrides ((CF2XCO)2O, X=Cl and Br) and alkali metal halides (X’=Cl and Br). In situ prepared fluorinated diacyl peroxides were identified as important intermediates, and the use of appropriate bipyridyl‐based ligands and a copper catalyst was essential for achieving high product selectivity. The synthetic utility of the polyhalogenated products was demonstrated by exploiting differences in the reactivities of their C−X and C−X’ bonds to achieve selective derivatization. Finally, the reaction mechanism and ligand effect were investigated using experimental and theoretical methods to provide important insights for the further development of catalytic reactions.

Funder

Japan Society for the Promotion of Science

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3