Cyclodextrin ‘Chaperones’ Enable Quasi‐Ideal Supramolecular Network Formation and Enhanced Photodimerization of Hydrophobic, Red‐shifted Photoswitches in Water

Author:

Hoenders Daniel1ORCID,Ludwanowski Simon1,Barner‐Kowollik Christopher23ORCID,Walther Andreas1ORCID

Affiliation:

1. Life-Like Materials and Systems Lab Department of Chemistry University of Mainz Duesbergweg 10–14 55128 Mainz Germany

2. School of Chemistry and Physics and Centre for Materials Science Queensland University of Technology (QUT) 2 George Street, 4000 Brisbane, QLD Australia

3. Institute of Nanotechnology (INT) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany

Abstract

AbstractPrecision‐engineered light‐triggered hydrogels are important for a diversity of applications. However, fields such as biomaterials require wavelength outside the harsh UV regime to prevent photodamage, typically requiring chromophores with extended π‐conjugation that suffer from poor water solubility. Herein, we demonstrate how cyclodextrins can be used as auxiliary agents to not only solubilize such chromophores, but even to preorganize them in a 2 : 2 host‐guest inclusion complex to facilitate photodimerization. We apply our concept to styrylpyrene‐end‐functionalized star‐shaped polyethylene glycols (sPEGs). We initially unravel details of the host‐guest inclusion complex using spectroscopy and mass spectrometry to give clear evidence of a 2 : 2 complex formation. Subsequently, we show that the resultant supramolecularly linked hydrogels conform to theories of supramolecular quasi‐ideal model networks, and derive details on their association dynamics using in‐depth rheological measurements and kinetic models. By comparing sPEGs of different arm length, we further elucidate the model network topology and the accessible mechanical property space. The photo‐mediated dimerization proceeds smoothly, allowing to transform the supramolecular model networks into covalent ones. We submit that our strategy opens avenues for executing hydrophobic photochemistry in aqueous environments with enhanced control over reactivity, hydrogel topology or programmable mechanical properties.

Funder

Volkswagen Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3