Affiliation:
1. Institut des Sciences et Ingénierie Chimiques École Polytechnique Fédérale de Lausanne (EPFL) CH-1015 Lausanne Switzerland
2. Molecular Materials and Nanosystems Institute of Complex Molecular Systems Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
Abstract
AbstractBandgap‐tuneable mixed‐halide 3D perovskites are of interest for multi‐junction solar cells, but suffer from photoinduced spatial halide segregation. Mixed‐halide 2D perovskites are more resistant to halide segregation and are promising coatings for 3D perovskite solar cells. The properties of mixed‐halide compositions depend on the local halide distribution, which is challenging to study at the level of single octahedra. In particular, it has been suggested that there is a preference for occupation of the distinct axial and equatorial halide sites in mixed‐halide 2D perovskites. 207Pb NMR can be used to probe the atomic‐scale structure of lead‐halide materials, but although the isotropic 207Pb shift is sensitive to halide stoichiometry, it cannot distinguish configurational isomers. Here, we use 2D isotropic–anisotropic correlation 207Pb NMR and relativistic DFT calculations to distinguish the [PbX6] configurations in mixed iodide–bromide 3D FAPb(Br1−xIx)3 perovskites and 2D BA2Pb(Br1−xIx)4 perovskites based on formamidinium (FA+) and butylammonium (BA+), respectively. We find that iodide preferentially occupies the axial site in BA‐based 2D perovskites, which may explain the suppressed halide mobility.
Funder
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
H2020 Marie Skłodowska-Curie Actions
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献