Affiliation:
1. Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
2. State Key Laboratory of Elemento-Organic Chemistry and Tianjin Key Laboratory of Biosensing and Molecular Recognition College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
3. Haihe Laboratory of Sustainable Chemical Transformations Tianjin 300192 China
Abstract
AbstractChiral trisubstituted vicinal diols are a type of important organic compounds, serving as both common structure units in bioactive natural products and chiral auxiliaries in asymmetric synthesis. Herein, by using siloxypropadienes as the precursors of allyl copper(I) species, a copper(I)‐catalyzed diastereoselective and enantioselective reductive allylation of ketones was achieved, providing both syn‐diols and anti‐diols in good to excellent enantioselectivity. DFT calculations show that cis‐γ‐siloxy‐allyl copper species are generated favorably with either 1‐TBSO‐propadiene or 1‐TIPSO‐propadiene. Moreover, the steric difference of TBS group and TIPS group distinguishes the face selectivity of acetophenone, leading to syn‐selectivity for 1‐TBSO‐propadiene and anti‐selectivity for 1‐TIPSO‐propadiene. Easy transformations of the products were performed, demonstrating the synthetic utility of the present method. Moreover, one chiral diol prepared in the above transformations was used as a suitable organocatalyst for the catalytic asymmetric reductive self‐coupling of aldimines generated in situ with B2(neo)2.