Osthole regulates N6‐methyladenosine‐modified TGM2 to inhibit the progression of rheumatoid arthritis and associated interstitial lung disease

Author:

Lin Xian12,Chen Jian12,Tao Cheng3,Luo Lianxiang45,He Juan12,Wang Qingwen12

Affiliation:

1. Department of Rheumatism and Immunology Peking University Shenzhen Hospital Shenzhen China

2. Institute of Immunology and Inflammatory Diseases Shenzhen Peking University‐The Hong Kong University of Science and Technology Medical Center; Shenzhen Key Laboratory of Inflammatory and Immunology Diseases Shenzhen China

3. School of Pharmacy Guangdong Medical University Dongguan China

4. The Marine Biomedical Research Institute Guangdong Medical University Zhanjiang China

5. The Marine Biomedical Research Institute of Guangdong Zhanjiang Zhanjiang China

Abstract

AbstractRheumatoid arthritis (RA) is an inflammatory autoimmune disease, and RA interstitial lung disease (ILD) is a severe complication of RA. This investigation aims to determine the effect and underlying mechanism of osthole (OS), which could be extracted from Cnidium, Angelica, and Citrus plants and evaluate the role of transglutaminase 2 (TGM2) in RA and RA‐ILD. In this work, OS downregulated TGM2 to exert its additive effect with methotrexate and suppress the proliferation, migration, and invasion of RA‐fibroblast‐like synoviocytes (FLS) by attenuating NF‐κB signaling, resulting in the suppression of RA progression. Interestingly, WTAP‐mediated N6‐methyladenosine modification of TGM2 and Myc‐mediated WTAP transcription cooperatively contributed to the formation of a TGM2/Myc/WTAP‐positive feedback loop through upregulating NF‐κB signaling. Moreover, OS could downregulate the activation of the TGM2/Myc/WTAP‐positive feedback circuit. Furthermore, OS restrained the proliferation and polarization of M2 macrophages to inhibit the aggregation of lung interstitial CD11b+ macrophages, and the effectiveness and non‐toxicity of OS in suppressing RA and RA‐ILD progression were verified in vivo. Finally, bioinformatics analyses validated the importance and the clinical significance of the OS‐regulated molecular network. Taken together, our work emphasized OS as an effective drug candidate and TGM2 as a promising target for RA and RA‐ILD treatment.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

China Postdoctoral Science Foundation

Publisher

Wiley

Subject

Cell Biology,Biochemistry (medical),Genetics (clinical),Computer Science Applications,Drug Discovery,Genetics,Oncology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3