Radiomics features outperform standard radiological measurements in detecting femoroacetabular impingement on three‐dimensional magnetic resonance imaging

Author:

Montin Eros12ORCID,Kijowski Richard3,Youm Thomas4,Lattanzi Riccardo12

Affiliation:

1. Department of Radiology Bernard and Irene Schwartz Center for Biomedical Imaging New York New York USA

2. Department of Radiology Center for Advanced Imaging Innovation and Research (CAI2R) New York New York USA

3. Department of Radiology New York University Grossman School of Medicine New York New York USA

4. Department of Orthopedic Surgery New York University Grossman School of Medicine New York New York USA

Abstract

AbstractFemoroacetabular impingement (FAI) is a cause of hip pain and can lead to hip osteoarthritis. Radiological measurements obtained from radiographs or magnetic resonance imaging (MRI) are normally used for FAI diagnosis, but they require time‐consuming manual interaction, which limits accuracy and reproducibility. This study compares standard radiologic measurements against radiomics features automatically extracted from MRI for the identification of FAI patients versus healthy subjects. Three‐dimensional Dixon MRI of the pelvis were retrospectively collected for 10 patients with confirmed FAI and acquired for 10 healthy subjects. The femur and acetabulum were segmented bilaterally and associated radiomics features were extracted from the four MRI contrasts of the Dixon sequence (water‐only, fat‐only, in‐phase, and out‐of‐phase). A radiologist collected 21 radiological measurements typically used in FAI. The Gini importance was used to define 9 subsets with the most predictive radiomics features and one subset for the most diagnostically relevant radiological measurements. For each subset, 100 Random Forest machine learning models were trained with different data splits and fivefold cross‐validation to classify healthy subjects versus FAI patients. The average performance among the 100 models was computed for each subset and compared against the performance of the radiological measurements. One model trained using the radiomics features datasets yielded 100% accuracy in the detection of FAI, whereas all other radiomics features exceeded 80% accuracy. Radiological measurements yielded 74% accuracy, consistent with previous work. The results of this preliminary work highlight for the first time the potential of radiomics for fully automated FAI diagnosis.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3