A full characterization of invariant embeddability of unimodular planar graphs

Author:

Timár Ádám12,Tóth László Márton3

Affiliation:

1. Division of Mathematics, The Science Institute University of Iceland Reykjavik Iceland

2. Alfréd Rényi Institute of Mathematics Budapest Hungary

3. Chair of Ergodic and Geometric Group Theory École Polytechnique Fédérale de Lausanne Lausanne Switzerland

Abstract

AbstractWhen can a unimodular random planar graph be drawn in the Euclidean or the hyperbolic plane in a way that the distribution of the random drawing is isometry‐invariant? This question was answered for one‐ended unimodular graphs in Benjamini and Timar, using the fact that such graphs automatically have locally finite (simply connected) drawings into the plane. For the case of graphs with multiple ends the question was left open. We revisit Halin's graph theoretic characterization of graphs that have a locally finite embedding into the plane. Then we prove that such unimodular random graphs do have a locally finite invariant embedding into the Euclidean or the hyperbolic plane, depending on whether the graph is amenable or not.

Funder

Nemzeti Kutatási Fejlesztési és Innovációs Hivatal

Publisher

Wiley

Subject

Applied Mathematics,Computer Graphics and Computer-Aided Design,General Mathematics,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3