A down‐up chain with persistent labels on multifurcating trees

Author:

Sørensen Frederik1

Affiliation:

1. Department of Statistics University of Oxford Oxford UK

Abstract

AbstractIn this article, we propose to study a general notion of a down‐up Markov chain for multifurcating trees with labeled leaves. We study in detail down‐up chains associated with the ‐model of Chen et al. (Electron. J. Probab. 14 (2009), 400–430.), generalizing and further developing previous work by Forman et al. (arXiv:1802.00862, 2018; arXiv:1804.01205, 2018; arXiv:1809.07756, 2018; Random Struct. Algoritm. 54 (2020), 745–769; Electron. J. Probab. 25 (2020), 1–46.) in the binary special cases. The technique we deploy utilizes the construction of a growth process and a down‐up Markov chain on trees with planar structure. Our construction ensures that natural projections of the down‐up chain are Markov chains in their own right. We establish label dynamics that at the same time preserve the labeled alpha‐gamma distribution and keep the branch points between the smallest labels for order time steps for all . We conjecture the existence of diffusive scaling limits generalizing the “Aldous diffusion” by Forman et al. (arXiv:1802.00862, 2018; arXiv:1804.01205, 2018; arXiv:1809.07756, 2018.) as a continuum‐tree‐valued process and the “algebraic ‐Ford tree evolution” by Löhr et al. (Ann. Probab. 48 (2020), 2565–2590.) and by Nussbaumer and Winter (arXiv:2006.09316, 2020.) as a process in a space of algebraic trees.

Funder

Lundbeck Foundation

Engineering and Physical Sciences Research Council

Publisher

Wiley

Subject

Applied Mathematics,Computer Graphics and Computer-Aided Design,General Mathematics,Software

Reference28 articles.

1. The Continuum Random Tree. I

2. Exchangeability and related topics

3. D. J.Aldous.Wright‐fisher diffusions with negative mutation rate!http://www.stat.berkeley.edu/∼aldous/Research/OP/fw.html 1999.

4. Mixing Time for a Markov Chain on Cladograms

5. The nested chinese restaurant process and bayesian nonparametric inference of topic hierarchies

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3