Maximizing visible Raman resolution of nanodiamond grains fabricated by coaxial arc plasma deposition through oxygen plasma etching optimization

Author:

Valappil Sreenath Mylo12ORCID,Zkria Abdelrahman13ORCID,Sittimart Phongsaphak1ORCID,Ohmagari Shinya2ORCID,Yoshitake Tsuyoshi1ORCID

Affiliation:

1. Department of Advanced Energy Science and Engineering Kyushu University Kasuga Fukuoka Japan

2. Sensing System Research Center National Institute of Advanced Industrial Science and Technology (AIST) Tosu Saga Japan

3. Department of Physics, Faculty of Science Aswan University Aswan Egypt

Abstract

Among the nondestructive carbon material characterization tools, the prominence of visible Raman spectroscopy has surged remarkably for many years due to its ability to explore a diverse array of carbon bonding configurations. However, to fully unlock the distinctive features concealed within carbon composite materials, additional specimen treatments or precise spectroscope calibrations are necessary. In the same regard, the tiny diamond grain size (5–10 nm) and the pronounced amount of sp2 carbon in the ultrananocrystalline diamond film represent major challenges in visible light excitation. In this work, we employ calibrated oxygen plasma reactive ion etching conditions to manifest the nanodiamond visible Raman signature from ultrananocrystalline diamond/amorphous carbon composite (UNCD/a‐C) films fabricated by coaxial arc plasma deposition. Upon plasma etching, the broad defect band in the visible Raman spectra converged toward the diamond characteristic Raman peak at 1332 cm−1. A detailed explanation of band components of the Raman spectra is extracted through peak fitting procedures. The results of Raman spectroscopy are further correlated with the electrical characteristics of the nitrogen‐doped UNCD/a‐C films due to the optimized oxygen plasma etching processes.

Funder

Japan Society for the Promotion of Science

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3