Adaptation of Dynamic Data‐Driven Models for Real‐Time Applications: From Simulated to Real Batch Distillation Trajectories by Transfer Learning

Author:

Rihm Gerardo Brand1ORCID,Schueler Merlin2,Nentwich Corina2ORCID,Esche Erik1ORCID,Repke Jens-Uwe1

Affiliation:

1. Technische Universität Berlin, Sekr. KWT 9 Straße des 17. Juni 135 10623 Berlin Germany

2. Evonik Operations GmbH Technology & Infrastructure Paul-Baumann-Straße 1 45772 Marl Germany

Abstract

AbstractIn the absence of knowledge about challenging dynamic phenomena involved in batch distillation processes, e.g., complex flow regimes or appearing and vanishing phases, generation of accurate mechanistic models is limited. Real plant data containing this missing information is scarce, also limiting the use of data‐driven models. To exploit the information contained in measurement data and a related but inaccurate first‐principles model, transfer learning from simulated to real plant data is analyzed. For the use case of a batch distillation column, the adapted model provides more accurate predictions than a data‐driven model trained exclusively on scarce real plant data or simulated data. Its enhanced convergence and lower computational cost make it suitable for optimization in real‐time.

Funder

Bundesministerium für Wirtschaft und Energie

Publisher

Wiley

Subject

Industrial and Manufacturing Engineering,General Chemical Engineering,General Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3