Graph Learning in Machine‐Readable Plant Topology Data

Author:

Oeing Jonas1ORCID,Brandt Kevin1,Wiedau Michael2ORCID,Tolksdorf Gregor2,Welscher Wolfgang3,Kockmann Norbert1

Affiliation:

1. TU Dortmund University Department of Biochemical and Chemical Engineering, Laboratory of Equipment Design Emil-Figge-Straße 68 44227 Dortmund Germany

2. X-Visual Technologies GmbH James-Franck-Straße 15 12489 Berlin Germany

3. Evonik Operations GmbH Paul-Baumann-Straße 1 45128 Marl Germany

Abstract

AbstractDigitalization shows that data and its exchange are indispensable for a versatile and sustainable process industry. There must be a shift from a document‐oriented to a data‐oriented process industry. Standards for the harmonization of data structures play an essential role in this change. In engineering, DEXPI (Data Exchange in the Process Industry) is already a well‐developed, machine‐readable data standard for describing piping and instrumentation diagrams (P&ID). In this publication, industry, software vendors, and research institutions have joined forces to demonstrate the current developments and potentials of machine‐readable P&IDs in the DEXPI format combined with artificial intelligence. The aim is to use graph neural networks to learn patterns in machine‐readable P&ID data, which results in the efficient engineering and development of new P&IDs.

Publisher

Wiley

Subject

Industrial and Manufacturing Engineering,General Chemical Engineering,General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3