Image‐Based Flow Regime Recognition in Aerated Stirred Tanks Using Deep Transfer Learning

Author:

Khaydarov Valentin1,Becker Marc Philipp1,Urbas Leon1

Affiliation:

1. Technische Universität Dresden Process Control Systems/Process System Engineering/Process-To-Order Lab Helmholtzstraße 10 01062 Dresden Germany

Abstract

AbstractMonitoring of flow regimes in aerated stirred tanks is important to ensure energy efficiency and product quality. The use of deep learning models for the recognition of flow regimes shows promising results. However, such models require a large amount of data for training. The aim of this paper is to apply the deep transfer learning approach to address this challenge. We compare various pre‐trained models with the differential learning rate and 2‐step transfer learning approaches to analyse the resultant model performance. We also investigate the effect of the dataset size on the classification accuracy.

Publisher

Wiley

Subject

Industrial and Manufacturing Engineering,General Chemical Engineering,General Chemistry

Reference26 articles.

1. CHAPTER 1. Intensified Fermentation Processes and Equipment

2. M. M. C. G.Warmoeskerken Gas‐Liquid Dispersing Characteristics of Turbine Agitators Doctoral Dissertation TU Delft1986.

3. A. W.Nienow On the Flooding/Loading Transition and the Complete Dispersal Condition in Aerated Vessels Agitated by a Rushton‐Turbine inProc 5th European Conf. on Mixing Wurzburg1985.

4. Characterization of Gas−Liquid Flows in Stirred Vessels Using Pressure and Torque Fluctuations

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. 70 Jahre Verfahrenstechnik an der TU Dresden;Chemie Ingenieur Technik;2023-10-06

2. AI in Process Industries – Current Status and Future Prospects;Chemie Ingenieur Technik;2023-04-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3