Artificial DNA in hydrology

Author:

Foppen Jan Willem1ORCID

Affiliation:

1. Water Resources Section, Department of Water Management, Faculty of Civil Engineering and Geosciences Delft University of Technology Delft Netherlands

Abstract

AbstractThe use of artificial DNA (artDNA) in hydrological applications is becoming increasingly popular, either in dissolved form (dissolved artDNA) or encapsulated and protected by a layer (encDNA). DNA can be detected even at low concentrations and offers the ability to create numerous uniquely identifiable DNA labels, making it ideal for a wide range of multi‐tracer applications. A literature review revealed that in streams, the breakthrough curve of artDNA is visually similar to that of a conservative tracer in terms of time to rise, time to peak, and dispersion coefficient. In saturated porous or fractured media, the time of first arrivals and time to peak of artDNA are usually earlier than that of a conservative tracer, indicating size exclusion of both dissolved artDNA and encDNA. Transport in subsurface media can be described by one‐site or two‐site kinetic attachment. The recovery of artDNA in environmental systems is always less than 100% due to adsorption and decay. Although the processes responsible for both are known, yet they cannot be quantified or predicted in mass balance approaches. Despite these limitations, artDNA can be used in various hydrological applications in environmental studies and engineering. Finally, attention should focus on the use of rapid detection of DNA tracers in the field, on upscaling of DNA production, and on increasing the efficiency of the DNA encapsulation process.This article is categorized under: Science of Water > Hydrological Processes Science of Water > Water Quality Science of Water > Methods

Publisher

Wiley

Subject

Management, Monitoring, Policy and Law,Ocean Engineering,Water Science and Technology,Aquatic Science,Ecology,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3