Affiliation:
1. Department of Chemistry Central Tehran Branch, Islamic Azad University Tehran Iran
2. Department of Chemistry Varamin (Pishva) Branch, Islamic Azad University Varamin Iran
Abstract
AbstractLevels of anticancer agents in cancer patients' body fluids are typically measured to adjust drug dosages or improve treatment results. The goal of this research is to present a new method for extracting bicalutamide (BCT) from biological samples using a responsive polymeric nanoadsorbent that reacts to temperature and near‐infrared radiation (NIR). To achieve this, the surface layers of tungsten disulfide nanosheets are modified using poly (N‐vinylcaprolactam) and three generations of polymeric dendrimers. The adsorbent product is then characterized using thermogravimetric analysis, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, and X‐ray diffraction techniques. The drug loading operation on the proposed adsorbent is studied through central composite design and response surface strategy, with optimization for temperature (25–45°C), pH (5–9), and contact time (2–18 min). Nonlinear kinetic and adsorption isotherm analysis results show the best fit with Langmuir and pseudo‐second‐order models. The drug release process from the BCT‐loaded adsorbent is investigated via an HPLC‐UV system under both NIR‐irradiated and non‐irradiated conditions. The suggested method demonstrates remarkable recovery rates for BCT spikes from urine (95.23%) and plasma (93.33%), respectively. Overall, the recommended strategy can be regarded as a potent analytical tool for evaluating BCT in complex biosamples.