An importance sampling approach for reliable and efficient inference in Bayesian ordinary differential equation models

Author:

Timonen Juho1ORCID,Siccha Nikolas1,Bales Ben2,Lähdesmäki Harri1,Vehtari Aki1ORCID

Affiliation:

1. Department of Computer Science Aalto University Espoo 02150 Finland

2. Earth Institute University of Columbia New York New York 10025 USA

Abstract

Statistical models can involve implicitly defined quantities, such as solutions to nonlinear ordinary differential equations (ODEs), that unavoidably need to be numerically approximated in order to evaluate the model. The approximation error inherently biases statistical inference results, but the amount of this bias is generally unknown and often ignored in Bayesian parameter inference. We propose a computationally efficient method for verifying the reliability of posterior inference for such models, when the inference is performed using Markov chain Monte Carlo methods. We validate the efficiency and reliability of our workflow in experiments using simulated and real data and different ODE solvers. We highlight problems that arise with commonly used adaptive ODE solvers and propose robust and effective alternatives, which, accompanied by our workflow, can now be taken into use without losing reliability of the inferences.

Funder

Academy of Finland

Publisher

Wiley

Subject

Statistics, Probability and Uncertainty,Statistics and Probability

Reference28 articles.

1. Mathematical analysis of the pharmacokinetic–pharmacodynamic (PKPD) behaviour of monoclonal antibodies: Predicting in vivo potency

2. Barber D. &Wang Y.(2014).Gaussian processes for Bayesian estimation in ordinary differential equations. InProceedings of the 31st International Conference on Machine Learning (Xing E. P. &Jebara T.  Eds.) Proceedings of Machine Learning Research 32 PMLR(pp.1485–1493).Bejing China.

3. Automatic differentiation in machine learning: a survey;Baydin A. G.;Journal of Machine Learning Research,2018

4. Algorithmic Differentiation of Implicit Functions and Optimal Values

5. Betancourt M.(2018).A conceptual introduction to Hamiltonian Monte Carlo.https://doi.org/10.48550/arxiv.1701.02434

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3