Existence of multi‐dimensional contact discontinuities for the ideal compressible magnetohydrodynamics

Author:

Wang Yanjin1,Xin Zhouping2

Affiliation:

1. School of Mathematical Sciences Xiamen University Xiamen China

2. The Institute of Mathematical Sciences The Chinese University of Hong Kong Shatin NT Hong Kong

Abstract

AbstractWe establish the local existence and uniqueness of multi‐dimensional contact discontinuities for the ideal compressible magnetohydrodynamics (MHD) in Sobolev spaces, which are most typical interfacial waves for astrophysical plasmas and prototypical fundamental waves for hyperbolic systems of conservation laws. Such waves are characteristic discontinuities for which there is no flow across the discontinuity surface while the magnetic field crosses transversely, which lead to a two‐phase free boundary problem where the pressure, velocity and magnetic field are continuous across the interface whereas the entropy and density may have jumps. To overcome the difficulties of possible nonlinear Rayleigh–Taylor instability and loss of derivatives, here we use crucially the Lagrangian formulation and Cauchy's celebrated integral (1815) for the magnetic field. These motivate us to define two special good unknowns; one enables us to capture the boundary regularizing effect of the transversal magnetic field on the flow map, and the other one allows us to get around the troublesome boundary integrals due to the transversality of the magnetic field. In particular, our result removes the additional assumption of the Rayleigh–Taylor sign condition required by Morando, Trakhinin and Trebeschi (J. Differ. Equ. 258 (2015), no. 7, 2531–2571; Arch. Ration. Mech. Anal. 228 (2018), no. 2, 697–742) and holds for both 2D and 3D and hence gives a complete answer to the two open questions raised therein. Moreover, there is no loss of derivatives in our well‐posedness theory. The solution is constructed as the inviscid limit of solutions to some suitably‐chosen nonlinear approximate problems for the two‐phase compressible viscous non‐resistive MHD.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Applied Mathematics,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3