Affiliation:
1. Department of Data Science, School of Technologies Cardiff Metropolitan University Cardiff UK
2. Faculty of Applied Computing and Technology (FACT) Noroff University College Kristiansand Norway
Abstract
AbstractAccurate forecasting of airline passenger traffic is important for facilitating the effective management and planning of aviation resources. In this study, we explore the air passenger traffic in the Norwegian aviation industry by collecting the passenger flow data and the corresponding measurements of the weather conditions affecting the flow from the different airports in Norway. We then proposed nonlinear autoregressive with exogenous input (NARX) forecasting models to predict air passenger traffic in advance. The NARX models account for the nonlinearity and nonstationarity in the passenger flow and allow the accurate forecasting of air passenger traffic. We perform experiments to demonstrate the effectiveness of two variants of the NARX model and compare their performances against long short‐term memory (LSTM), a deep learning method. We show that the proposed NARX model achieves the best prediction accuracy compared to LSTM, which is considered as a state‐of‐the‐art approach for fitting sequential data.
Subject
Management Science and Operations Research,Statistics, Probability and Uncertainty,Strategy and Management,Computer Science Applications,Modeling and Simulation,Economics and Econometrics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献