Boosting primary amines renewable tandem synthesis via defect engineering of NiCo alloy

Author:

Zhao Yang12,Wang Qian12ORCID,Wu Huifang12,Zheng Lirong3,Gao Zhexi12,Guo Xuanlin12,Cao Xingzhong3,Li Dianqing12,Feng Junting12ORCID

Affiliation:

1. State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts Beijing University of Chemical Technology Beijing China

2. Quzhou Resources Chemical Innovation Research Institute Quzhou China

3. Institute of High Energy Physics, Chinese Academy of Sciences Beijing China

Abstract

AbstractReductive amination of biomass aldehydes is a vital process to synthesize chemical intermediates primary amine, but the selectivity is severely compromised by the self‐condensation of highly reactive imine intermediates. Herein, we proposed a solution by manipulating the adsorption configuration of secondary imine via defect engineering. Specifically, a gradient reduction strategy was used to adjust the driving force of NiCo alloy crystallization, thus motivating the formation of metal vacancy clusters. The primary amine selectivity was raised from 70.9% to 95.1% with defect concentration increased from 36.1% to 42.5% on catalysts. In situ fourier transform infrared spectroscopy (FTIR) and density functional theory demonstrated metal vacancy clusters induced remarkable NiCo electron transfer, which strengthened electronic coupling between secondary imine with catalyst, resulting in a flat configuration that was conducive to CN bond breakage to guarantee smooth conversion into primary amines. This catalyst exhibited potential real‐life application prospects for its low cost, universality in reductive amination of various aldehydes, and long‐life reusability.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3