Green synthesis and characterization of Ni0.25Zn0.75Fe2O4magnetic nanoparticles and study of their photocatalytic activity in the degradation of aniline

Author:

Kiani Mohammad Taghi1ORCID,Ramazani Ali12ORCID,Taghavi Fardood Saeid3ORCID

Affiliation:

1. Department of Chemistry, Faculty of Science University of Zanjan Zanjan 45371‐38791 Iran

2. Department of Biotechnology, Research Institute of Modern Biological Techniques (RIMBT) University of Zanjan Zanjan 45371‐38791 Iran

3. Department of Chemistry, Faculty of Science Ilam University Ilam 69315516 Iran

Abstract

Because aniline is a persistent pollutant, a cost‐effective and efficient removal method is urgently needed. This study evaluates the synergistic effect of nickel doping in spinel zinc ferrite to enhance the photocatalytic performance of magnetic nanoparticles. Herein, X‐ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Brunauer–Emmett–Teller (BET), differential reflectance spectroscopy (DRS), transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), energy‐dispersive X‐ray spectroscopy (EDX)/Map, and vibrating‐sample magnetometry (VSM) techniques were used to evaluate Ni0.25Zn0.75Fe2O4MNPs synthesis by a sol–gel method. The produced nanoparticles have a surface area of 20.325 m2 g−1. At room temperature, the nanoparticles exhibit superparamagnetic characteristics and can be readily separated from the aqueous solution. The bandgap has been determined to be 1.83 eV using Tauc's plot. In addition, the photocatalytic activity of as‐prepared Ni0.25Zn0.75Fe2O4MNPs for aniline degradation under visible light irradiation was examined. The photocatalytic results demonstrate that nickel‐doped zinc ferrite has high photocatalytic activity in aniline degradation. Additionally, Ni0.25Zn0.75Fe2O4magnetic nanoparticles (MNPs) are highly magnetic in nature, which simplifies separation and repetitive reuse.

Funder

Ilam University

University of Zanjan

Publisher

Wiley

Subject

Inorganic Chemistry,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3