Propagation algorithm for hybrid uncertainty parameters based on polynomial chaos expansion

Author:

Wang Zong‐fan1ORCID,Wang Li‐qun1,Wang Xiu‐ye1,Sun Qin‐qin2,Yang Guo‐lai1

Affiliation:

1. School of Mechanical Engineering Nanjing University of Science and Technology Nanjing China

2. College of Energy and Power Engineering Nanjing University of Aeronautics and Astronautics Nanjing China

Abstract

AbstractThis article presents an uncertainty analysis method for systems with hybrid stochastic and fuzzy uncertainty parameters based on polynomial chaos expansion (PCE). Parameters in the system are described by probability boxes, interval numbers, and fuzzy sets, respectively, based on the differences in their limited stochastic knowledge. First, this method transforms the uncertain parameters into standard normal distribution and interval variables through equal probability transformation or ‐cut operations. Second, the Legendre and Hermite polynomials are used as the PCE model's primary functions, and the expansion coefficients are calculated by the Galerkin projection method based on sparse grid numerical integration. Then, the system response bounds under the pre‐defined confidence level can be obtained using a genetic algorithm to solve the optimization problem constructed based on PCE models. Finally, the feasibility and effectiveness of the method are illustrated by taking the tank bi‐directional stabilized system and the double‐pendulum‐controlled system as examples. The numerical results show that the system response bounds obtained by the PCE model optimization algorithm are consistent with the Monte Carlo simulation. Still, the computational efficiency is much higher. The proposed method effectively combines fuzzy sets and probability boxes and dramatically simplifies the analysis process of uncertain systems. The method exhibits fine precision even in high‐dimensional uncertainty analysis problems.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

China Postdoctoral Science Foundation

Publisher

Wiley

Subject

Applied Mathematics,General Engineering,Numerical Analysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3