Seismic design and engineering practice of 10‐story shear wall structure with replaceable viscoelastic coupling beams

Author:

Zhou Ying1,Liu Xiaofang1,Xiao Yi1,Wu Hao1ORCID,Wang Meng1

Affiliation:

1. State Key Laboratory of Disaster Reduction in Civil Engineering Tongji University 1239 Siping Road Shanghai 200092 China

Abstract

SummaryStructures with replaceable energy‐dissipating elements are attractive systems for improving building resilience. Damage in these structures is mainly limited to dissipating elements, which can be replaced after earthquakes. Among the energy‐dissipating elements, viscoelastic dampers (VEDs) can dissipate energy even under small deformations while providing stable fatigue performances, which benefits high‐rise buildings in resisting both wind and earthquake loadings. This paper presents the seismic design of an engineering practice of a 10‐story shear wall building with replaceable viscoelastic coupling beams. A new type of viscoelastic material that has negligible frequency dependency is adopted to provide stable constraint for the wall piers. The design details, including VEDs, nonreplaceable segment, and the detachable connection, are exemplified. The numerical model of the replaceable structure is established and analyzed under dynamic loadings. Results confirm that the implementation of replaceable viscoelastic coupling beams improves structural seismic performance. The plastic rotation at the end of the coupling beam is significantly reduced up to 41.4% compared with the traditional coupled shear wall structure.

Funder

National Natural Science Foundation of China-Shenzhen Robotics Research Center Project

China Postdoctoral Science Foundation

Publisher

Wiley

Subject

Building and Construction,Architecture,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3