Automated testing and interactive construction of unavoidable sets for graph classes of small path‐width

Author:

Bachtler Oliver1,Heinrich Irene2

Affiliation:

1. Optimization Research Group Technische Universität Kaiserslautern Kaiserslautern Germany

2. Graphs and Groups Technische Universität Darmstadt Darmstadt Germany

Abstract

AbstractLet be a class of graphs with a membership test, , and let be the class of graphs in of path‐width at most . We present an interactive framework that finds an unavoidable set for , which is a set of graphs such that any graph in contains an isomorphic copy of a graph in . At the core of our framework is an algorithm that verifies whether a set of graphs is, indeed, unavoidable for . While obstruction sets are well‐studied, so far there is no general theory or algorithm for finding unavoidable sets. In general, it is undecidable whether a finite set of graphs is unavoidable for a given graph class. However, we give a criterion for termination: our algorithm terminates whenever is locally checkable of bounded maximum degree and is a finite set of connected graphs. For example, ‐regular graphs, ‐colourable graphs, and ‐free graphs are locally checkable classes. We put special emphasis on the case that is the class of cubic graphs and tailor the algorithm to this case. In particular, we introduce the new concept of high‐degree‐first path‐decompositions, which enables highly efficient pruning techniques. We exploit our framework to prove a new lower bound on the path‐width of cubic graphs. Moreover, we determine the extremal girth values of cubic graphs of path‐width for all and all smallest graphs which take on these extremal girth values. Further, we present a new constructive characterisation of the extremal cubic graphs of path‐width 3 and girth 4.

Funder

European Research Council

Publisher

Wiley

Subject

Geometry and Topology,Discrete Mathematics and Combinatorics

Reference24 articles.

1. Every planar map is four colorable. Part I: Discharging

2. Every planar map is four colorable. Part II: Reducibility

3. O.Bachtler andI.Heinrich Reductions for the 3‐decomposition conjecture. Version 2. 2022. arXiv: 2104.15113 [math.CO].https://doi.org/10.48550/arXiv.2104.15113

4. A partial k-arboretum of graphs with bounded treewidth

5. H. L.Bodlaender B. A.Burton F. V.Fomin andA.Grigoriev Knot diagrams of treewidth two Version 2. 2019. arXiv: 1904.03117 [cs.DS].https://doi.org/10.48550/arXiv.1904.03117

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3