Intraseasonal descriptors and extremes in South African rainfall. Part II: Summer teleconnections across multiple timescales

Author:

Ullah Asmat1ORCID,Pohl Benjamin1ORCID,Pergaud Julien1,Dieppois Bastien2,Rouault Mathieu3

Affiliation:

1. Centre de Recherches de Climatologie, UMR 6282 Biogéosciences CNRS/Université de Bourgogne Franche‐Comté Dijon France

2. Centre for Agroecology, Water and Resilience Coventry University Coventry UK

3. Nansen Tutu Center for Marine Environmental Research, Department of Oceanography University of Cape Town Cape Town South Africa

Abstract

AbstractExtreme events contribute significantly to rainfall variability in semi‐arid regions like South Africa. Here, following the definition of a novel typology of rainfall extremes, disentangling large‐ and small‐scale events in Part I, we use quality‐controlled observational databases in South Africa, the ERA5 reanalysis and satellite estimates TRMM‐3B42 to examine the relationship between these two types of rainfall extremes and different modes of climate variability at various timescales. At low frequencies, rainfall extremes are assessed at interannual (IV: 2–8 years) and quasi‐decadal (QDV: 8–13 years) timescales, which are primarily associated with the El Niño–Southern Oscillation (ENSO) and the Interdecadal Pacific Oscillation (IPO), respectively. At subseasonal timescales, the typology of rainfall extremes is analysed depending on the synoptic configurations, as inferred by seven convective regimes including tropical temperate troughs (TTTs: 3–7 days), and the intraseasonal variability associated with the Madden–Julien Oscillation (MJO: 30–60 days). At the IV timescale, the occurrence of large‐scale extremes is substantially higher during its wet phases thereby suggesting a 400% rise in the occurrence of large‐scale extremes as compared to its dry phases. At the QDV timescale, variability mostly relates to the modulation of small‐scale extremes during its wet phases. Teleconnections with global sea surface temperature (SST) confirm that La Niña conditions favour overall wet conditions and extremes in South Africa. The numbers of large‐scale extremes are consistently related to warmer SSTs in the North Atlantic, while their link with warmer Indian and tropical South Atlantic oceans is found to be statistically independent of the state of ENSO. At the subseasonal timescales, large‐scale extremes largely occur during three out of the seven convective regimes identified in the southern African region whereas small‐scale extremes are nearly equiprobable during all convective regimes. The occurrence of large‐scale extremes during continent‐rooted TTT is further enhanced during the locally wet phases of the MJO and is symmetrically weakened during its dry phases.

Publisher

Wiley

Subject

Atmospheric Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Southern Africa Climate Over the Recent Decades: Description, Variability and Trends;Sustainability of Southern African Ecosystems under Global Change;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3