Persulfate activation enhanced by sulfur‐doped cobaltous tetroxide for rapid and efficient degradation of atrazine

Author:

Liu Shanjun1,Sun Shan1,Xu Yahui1,Zhang Jianlin1ORCID

Affiliation:

1. Jinan Environmental Research Academy Jinan China

Abstract

AbstractBACKGROUNDAtrazine is present in aquatic systems as a pesticide, and poses a serious threat to ecosystems and human health. The advanced oxidation technology based on persulfate is considered a promising approach for removing trace pesticides from water. The synthesis of a persulfate activator for the rapid and efficient degradation of atrazine was studied.RESULTSA novel rod‐like sulfur‐doped Co3O4 (S‐Co3O4) was prepared via the hard template method and used as a persulfate activator to degrade atrazine. The removal efficiency of atrazine (10 mM) could be up to 100% in the presence of peroxymonosulfate (1 mM) activated by S‐Co3O4 (50 mg L−1) within 7 min.CONCLUSIONThe nanorod structure of S‐Co3O4 is conducive to mass transfer and increases the probability of reaction between substances, and sulfur doping increases the interfacial charge transfer capability. The mechanism of atrazine degradation was mainly attributed to the combined effects of •OH and SO4•−, with the effect of SO4•− being more important. The main degradation pathways of atrazine are dichlorination, hydroxylation and dealkylation, corresponding to the cleavage of Cl1‐C9, N5‐C10 and N6‐C11, respectively. © 2024 Society of Chemical Industry (SCI).

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3