Optimal trajectory tracking for uncertain linear discrete‐time systems using time‐varying Q‐learning

Author:

Geiger Maxwell1ORCID,Narayanan Vignesh2ORCID,Jagannathan Sarangapani1ORCID

Affiliation:

1. Department of Electrical and Computer Engineering Missouri University of Science and Technology Rolla Missouri USA

2. Department of Computer Science and Engineering University of South Carolina Columbia South Carolina USA

Abstract

SummaryThis article introduces a novel optimal trajectory tracking control scheme designed for uncertain linear discrete‐time (DT) systems. In contrast to traditional tracking control methods, our approach removes the requirement for the reference trajectory to align with the generator dynamics of an autonomous dynamical system. Moreover, it does not demand the complete desired trajectory to be known in advance, whether through the generator model or any other means. Instead, our approach can dynamically incorporate segments (finite horizons) of reference trajectories and autonomously learn an optimal control policy to track them in real time. To achieve this, we address the tracking problem by learning a time‐varying ‐function through state feedback. This ‐function is then utilized to calculate the optimal feedback gain and explicitly time‐varying feedforward control input, all without the need for prior knowledge of the system dynamics or having the complete reference trajectory in advance. Additionally, we introduce an adaptive observer to extend the applicability of the tracking control scheme to situations where full state measurements are unavailable. We rigorously establish the closed‐loop stability of our optimal adaptive control approach, both with and without the adaptive observer, employing Lyapunov theory. Moreover, we characterize the optimality of the controller with respect to the finite horizon length of the known components of the desired trajectory. To further enhance the controller's adaptability and effectiveness in multitask environments, we employ the Efficient Lifelong Learning Algorithm, which leverages a shared knowledge base within the recursive least squares algorithm for multitask ‐learning. The efficacy of our approach is substantiated through a comprehensive set of simulation results by using a power system example.

Funder

Office of Naval Research

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3