Joint beam power and pointing management in multi‐beam low earth orbit and low earth orbit co‐existing satellite system

Author:

He Mengmin1ORCID,Cui Gaofeng12ORCID,Wu Mengjing1,Wang Weidong12

Affiliation:

1. School of Electronic Engineering Beijing University of Posts and Telecommunications Beijing China

2. Key Laboratory of Universal Wireless Communications, Ministry of Education Beijing University of Posts and Telecommunications Beijing China

Abstract

SummaryRecently, the low earth orbit (LEO) satellite has attracted much attention due to its advantages of low latency and construction costs. However, the scarcity of frequency spectrum resources has resulted in these satellites sharing the same spectrum to provide services for ground users. So, challenges such as overlapping beam coverage and inter‐beam interference occur in the multi‐beam LEO satellite coexistence scenario. Therefore, this paper focuses on the issue of interference coexistence in LEO and LEO (LEO–LEO) co‐existing scenario, where the initially established system is the primary system, and the later established system is the secondary system. The interference coexistence problem is modeled as a multi‐objective optimization problem. The joint beam power and pointing management (JBPPM) based on particle swarm optimization (PSO) is proposed. The power control is applied to the LEO satellites in the secondary system to reduce the interference to the primary system user. Meanwhile, beam pointing optimization is adopted by the LEO users in the secondary system to avoid interference from the primary system and ensure the minimum communication ability. The simulation results verify that the proposed technique can adapt to various coexistence conditions and outperform the existing method.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3