MicroRNA‐155‐5p in serum derived‐exosomes promotes ischaemia–reperfusion injury by reducing CypD ubiquitination by NEDD4

Author:

Hu Chenkai1,Liao Junyu2,Huang Ruiyan2,Su Qiang23,He Lei1

Affiliation:

1. Department of Cardiology The Second Affiliated Hospital of Nanchang University Nanchang China

2. Department of Cardiology Affiliated Hospital of Guilin Medical University Guilin China

3. Guangxi Health Commission Key Laboratory of Disease Proteomics Research Guilin China

Abstract

AbstractAimsRecovery of blood flow is a therapeutic approach for myocardial infarction but paradoxically induces injury to the myocardium. Exosomes (exos) are pivotal mediators for intercellular communication that can be released by different cells and are involved in cardiovascular diseases. This study aimed to explore the possible effects and mechanisms of miR‐155‐5p loaded by serum‐derived exos in myocardial infarction reperfusion injury (MIRI).Methods and resultsExos were isolated from mouse serum after induction of ischaemia reperfusion (I/R) and injected into I/R‐treated mice to assess cardiac function, infarction size, and cardiomyocyte apoptosis. Primary cardiomyocytes were transfected with miR‐155‐5p inhibitor before treatment with oxygen–glucose deprivation and re‐oxygenation (OGD/R) and exos derived from the serum of I/R‐treated mice (I/R‐Exos), in which Bcl‐2, Bax, and cleaved‐caspase‐3 levels were detected. The interactions among miR‐155‐5p, NEDD4, and CypD were evaluated. miR‐155‐5p level was evidently increased in I/R‐Exos than in exos from the serum of sham‐operated mice (P < 0.05). In comparison with the I/R group, the I/R‐Exos + I/R group had increased infarct size, elevated miR‐155‐5p expression, and boosted apoptotic rate in mouse myocardium (P < 0.05). In mice treated with I/R‐Exos and I/R, miR‐155‐5p inhibition reduced cardiac infarct size and apoptosis (P < 0.05). NEDD4 was a target gene of miR‐155‐5p and promoted CypD ubiquitination. Cardiomyocyte apoptosis was markedly increased in the miR‐155‐5p inhibitor + shNEDD4 + OGD/R group versus the miR‐155‐5p inhibitor + OGD/R group (P < 0.05), but decreased in the miR‐155‐5p inhibitor + shNEDD4 + shCypD + OGD/R group than in the miR‐155‐5p inhibitor + shNEDD4 + OGD/R group (P < 0.05).ConclusionsmiR‐155‐5p in I/R‐Exos may facilitate MIRI by inhibiting CypD ubiquitination via targeting NEDD4.

Funder

Natural Science Foundation of Guangxi Province

Publisher

Wiley

Subject

Cardiology and Cardiovascular Medicine

Reference38 articles.

1. Understanding myocardial infarction

2. Lymphocyte Communication in Myocardial Ischemia/Reperfusion Injury

3. MicroRNA 3113-5p is a novel marker for early cardiac ischemia/reperfusion injury

4. Discovery of Potential Therapeutic miRNA Targets in Cardiac Ischemia–Reperfusion Injury

5. MicroRNA‐21 mediates the protective effects of salidroside against hypoxia/reoxygenation‐induced myocardial oxidative stress and inflammatory response;Liu B;Exp Ther Med,2020

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3