Nano graphene porous/conductive polymer as a composite material for energy storage in supercapacitors

Author:

Pahlavani Hossein1,Shayeh Javad Shabani2,Nouralishahi Amideddin3ORCID,Paroushi Maryam Sharifi4

Affiliation:

1. Fouman Faculty of Engineering, College of Engineering University of Tehran Tehran Iran

2. Protein Research Center Shahid Beheshti University Tehran Iran

3. Nanomaterials Research Lab, Department of Chemistry Missouri University of Science and Technology Rolla Missouri USA

4. Department of Chemical Engineering Missouri University of Science and Technology Rolla Missouri USA

Abstract

AbstractThis research studies the improving effects of graphene porous (GP) on the supercapacitive performance of a polyaniline/graphene porous (PANI/GP) nanocomposite. GP nanosheets were synthesized via chemical vapor deposition, and PANI/GP was electrochemically composited through successive cyclic voltammetry. The samples were characterized by fast Fourier transform infrared (FTIR), x‐ray diffraction (XRD), and scanning electron microscopy (SEM), and energy‐dispersive x‐ray spectrometry (EDS) techniques. Porous GP nanosheets were uniformly dispersed in the composite structure. Furthermore, the electrochemical performances of the synthesized samples were compared using galvanostatic charge/discharge, electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV). Incorporating GP into the PANI significantly increased specific capacitance from 276 (in PANI) to 577 F/g (in PANI/GP). The electrochemical stability of electrodes was compared during 1000 successive charge/discharge cycles. After 1000 cycles, PANI/GP kept 90% of its initial capacitance, and only 25% of the charge storage capacitance of bare PANI remained.

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3