Uniform and optimal error estimates of a nested Picard integrator for the nonlinear Schrödinger equation with wave operator

Author:

Cai Yongyong1ORCID,Feng Yue2,Guo Yichen3,Xu Zhiguo4

Affiliation:

1. Laboratory of Mathematics and Complex Systems (Ministry of Education), School of Mathematical Sciences Beijing Normal University Beijing People's Republic of China

2. School of Mathematics and Statistics Xi'an Jiaotong University Xi'an People's Republic of China

3. Department of Mathematics National University of Singapore Singapore Singapore

4. School of Mathematics Jilin University Changchun People's Republic of China

Abstract

AbstractWe propose a second‐order nested Picard iterative integrator sine pseudospectral (NPI‐SP) method for the nonlinear Schrödinger equation with wave operator (NLSW) involving a parameter and carry out rigorous error estimates. Actually, the equation propagates wave with wavelength in time, while the amplitude of the leading oscillation is for well‐prepared initial data, and for ill‐prepared initial data, respectively. Based on the exponential integrator and nested Picard iteration, the uniformly accurate (w.r.t. ) NPI‐SP scheme is proposed with the optimal uniform error bounds at in time and spectral accuracy in space for both well‐prepared and ill‐prepared data in ‐norm. This result significantly improves the error bounds of the finite difference methods and exponential wave integrator for the NLSW. Error estimates are rigorously carried out and numerical examples are provided to confirm the theoretical analysis.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3