Affiliation:
1. Institute of Modern Optics and Center of Single‐Molecule Science, Tianjin Key Laboratory of Micro‐Scale Optical Information Science and Technology Nankai University Tianjin China
2. School of Physics and Electronics Shandong Normal University Jinan China
3. Department of Physics University of Konstanz Konstanz Germany
Abstract
AbstractThanks to their excellent bond strength, phenyl‐based molecules with thiol anchoring groups are extensively employed to form stable single‐molecule junctions. However, two critical questions are still not answered which seriously hinder high‐yield establishing reliable molecular functional devices: (1) Whether molecular dimer junctions will be formed, and if this is the case, whether the dimerization is caused by intermolecular disulfide bonds or π–π stacking of phenyl rings; (2) Upon a mechanical‐compression force, is it possible that both anchoring groups of the molecule bond to the same electrode instead of bridging two opposite electrodes, which would drastically reduce the yield of the molecular junctions. Here, combining UV‐Vis/Raman spectroscopy of bulk molecules and conductance/flicker‐noise measurements of single molecules, we give compelling evidence that molecular dimers naturally form under ambient conditions, primarily via disulfide bonds rather than by π–π stacking. We further proposed a technique, named electrode‐compression‐hold‐on (ECHO), and reveal that the two thiol groups of phenyl‐backboned molecules will bond to the same electrode upon a compression force with a prolongated ECHO time. In contrast, the compression‐time‐dependent phenomenon is not observed for alkyl‐backboned molecules. The underlying mechanism for these unprecedented observations is elucidated, shedding light on the yield of molecular junctions.
Funder
National Natural Science Foundation of China
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献