Stream respiration exceeds CO2 evasion in a low‐energy, oligotrophic tropical stream

Author:

Solano Vanessa1ORCID,Duvert Clément12ORCID,Birkel Christian34ORCID,Maher Damien T.5ORCID,García Erica A.1ORCID,Hutley Lindsay B.1ORCID

Affiliation:

1. Research Institute for the Environment and Livelihoods Charles Darwin University Darwin Australia

2. National Centre for Groundwater Research and Training Adelaide Australia

3. Department of Geography, Water and Global Change Observatory University of Costa Rica San José Costa Rica

4. Northern Rivers Institute University of Aberdeen Aberdeen UK

5. Southern Cross Geoscience Southern Cross University Lismore Australia

Abstract

AbstractCarbon dioxide (CO2) can be either imported to streams through groundwater and subsurface inputs of soil‐respired CO2 or produced internally through stream metabolism. The contribution of each source to the CO2 evasion flux from streams is not well quantified, especially in the tropics, an underrepresented region in carbon (C) cycling studies. We used high‐frequency measurements of dissolved O2 and CO2 concentrations to estimate the potential contribution of stream metabolism to the CO2 evasion flux in a tropical lowland headwater stream. We found that the stream was heterotrophic all year round, with net ecosystem productivity (NEP) values ranging from 0.84 to 4.06 g C m−2 d−1 (median 1.29 g C m−2 d−1; here we expressed gross primary productivity (GPP) as a negative flux and ecosystem respiration (ER) as a positive flux). Positive NEP values were the result of a relatively low and stable GPP through the seasons, compared to a higher and more variable ER favored by the high temperatures and organic matter availability, particularly during the wet season. The CO2 evasion flux was relatively low due to low turbulence (median: 1.09 g C m−2 d−1). As a result, daily NEP rates exceeded the CO2 evasion flux with a potential contribution of 129% (median; 120–175% interquartile range), despite the strong seasonal changes in flow regime and landscape connectivity. The CO2 excess was likely transported downstream, where it was ultimately emitted to the atmosphere. Our results highlight the overwhelming importance of ER to the C cycle of low‐energy, oligotrophic tropical streams.

Funder

Australian Research Council

Publisher

Wiley

Subject

Aquatic Science,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3