A new floor function single‐carrier‐based modulated model predictive current control technique for single‐phase PUC5 inverter topology

Author:

Bhanuchandar Aratipamula1ORCID,Murthy Bhagwan K.1

Affiliation:

1. Department of Electrical Engineering National Institute of Technology Warangal Warangal India

Abstract

SummaryIn this paper, a new floor function (F2) single‐carrier (SC)‐based modulated model predictive current control technique (M2PC2T) has been proposed by considering the conventional single‐phase five‐level packed U‐cell (PUC5) inverter topology. Generally, to regulate the output current, the finite control set‐based MPC technique without a modulator inherently operates with variable switching frequency, and it is unsuitable for industrial applications. To alleviate this, authors have implemented M2PC2T, which provides constant switching frequency of operation. In this technique, generally, the predictive algorithm has been integrated with any modulation stage. However, while the implementation of pulse width modulation (PWM) techniques, most authors have used conventional PWM techniques which further increases the control complexity as the level number increases. In this manuscript, a simple and generalized F2‐SC‐PWM technique has been proposed and integrated with the predictive algorithm. This PWM technique implementation process is very simple as compared with all conventional PWM techniques since even if the level number increases, the number of modulating and carrier signals is always only one. Finally, the complete closed‐loop control technique is called a generalized F2‐SC‐M2PC2T which is suitable for all stiff direct current (dc) sources and switched capacitor‐type multilevel inverter (MLI) topologies. The proposed control technique (PCT) has been experimentally verified with different transient and steady‐state case studies by considering resistive‐inductive load.

Publisher

Wiley

Subject

Applied Mathematics,Electrical and Electronic Engineering,Computer Science Applications,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3