Hydropeaking mitigation with re‐regulation reservoirs

Author:

Mchayk Ali1ORCID,Marttila Hannu1ORCID,Klöve Björn1,Torabi Haghighi Ali1ORCID

Affiliation:

1. Water Resources and Environmental Engineering Research Group, University of Oulu Oulu Finland

Abstract

AbstractThe role of hydropower as a renewable and balancing power source is expected to increase in a Net Zero Emissions by 2050 scenario. As a common phenomenon in hydropower plants, hydropeaking will become more prominent, resulting in additional stresses on the ecological status of rivers. Here we propose a novel approach to design and operate auxiliary reservoirs called re‐regulation reservoirs (RRR) that aim to mitigate the adverse impacts of hydropeaking on rivers. A re‐regulation reservoir aims at smoothing flow fluctuations caused by hydropeaking by diverting and retaining parts of high flows and returning them back to river corridors during low flows. Using actual data from a hydropeaking‐influenced river system, the operation and efficiency of potential reservoirs have been investigated. An open‐access algorithm was developed to analyze the influence of the reservoirs to mitigate hydropeaking, considering peak and minimum flow and up‐ and down‐ramping rates. The findings illustrate that, in most cases, the required reservoir volume increases as the flow thresholds become more stringent. Nonetheless, several exceptions were observed, where larger reservoir volumes were required compared with cases with more stringent thresholds. These findings highlight the importance of understanding the impact of flow adjustments, while carefully considering the river regime, sub‐daily flow patterns, and unique characteristics of the river's ecosystem. Our approach shows theoretical possibilities for regulating hydropeaking and provides a basis for optimizing re‐regulation reservoirs, contributing to practical and adaptable strategies for sustainable hydropower management without increasing the operational cost of power systems.

Funder

Maa- ja Vesitekniikan Tuki Ry

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3