Functional diversity of microbial communities in herbaceous vegetation patches in coal mine heaps

Author:

Malicka Monika1ORCID,Bierza Wojciech1ORCID,Szalbot Monika2ORCID,Kompała‐Bąba Agnieszka1ORCID,Błońska Agnieszka1ORCID,Magurno Franco1ORCID,Piotrowska‐Seget Zofia1ORCID,Woźniak Gabriela1ORCID

Affiliation:

1. Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences University of Silesia in Katowice Katowice Poland

2. Sośnicowice Branch ‐ Pesticide Quality Testing Laboratory Institute of Plant Protection–National Research Institute Sośnicowice Poland

Abstract

AbstractCoal mine heaps represent unique novel environments, suitable for studying plant succession and its influence on the activity of microbes inhabiting the rhizosphere. Our aim was to verify if the functional diversity and catabolic activity of soil microorganisms would increase along with the plant succession from non‐vegetated and forbs‐dominated to grass‐dominated communities. The study was conducted on coal mine heaps located in Upper Silesia (Southern Poland), focusing on non‐vegetated patches, patches dominated by forbs–Tussilago farfara and Daucus carota (in the early stages of succession), and by grasses–Poa compressa and Calamagrostis epigejos (in later stages of primary succession). The catabolic activity and functional diversity of soil microbial communities were analyzed based on community‐level physiological profiles using BIOLOG EcoPlatesTM and the activity of dehydrogenase, alkaline phosphatase, acid phosphatase, and urease. Our results showed that spontaneous vegetation on coal mine heaps strongly affects the physicochemistry of the substrate and the functional diversity of soil microbial communities. Grasses' rhizosphere was hosting more active and functional diversified microbial communities, while non‐vegetated and T. farfara‐vegetated patches were accompanied by a reduced development of soil microbiota. Furthermore, grasses were mainly associated with a substantial delivery of plant litter to the substrate, providing a source of carbon for microorganisms.

Funder

Narodowe Centrum Nauki

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3